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Abstract— We analyze expert review and student performance
data to evaluate the validity of the Cybersecurity Concept
Inventory (CCI) for assessing student knowledge of core
cybersecurity concepts after a first course on the topic. A
panel of 12 experts in cybersecurity reviewed the CCI, and
142 students from six different institutions took the CCI as
a pilot test. The panel reviewed each item of the CCI and
the overwhelming majority rated every item as measuring
appropriate cybersecurity knowledge. We administered the CCI
to students taking a first cybersecurity course either online or
proctored by the course instructor. We applied classical test
theory to evaluate the quality of the CCI. This evaluation
showed that the CCI is sufficiently reliable for measuring student
knowledge of cybersecurity and that the CCI may be too difficult
as a whole. We describe the results of the expert review and
the pilot test and provide recommendations for the continued
improvement of the CCI.

Keywords—Cybersecurity education, Cybersecurity Assessment
Tools (CATS) Project, Cybersecurity Concept Inventory (CCI),
assessment validation.

I. INTRODUCTION

The United States is facing an unfulfilled demand for
cybersecurity professionals, leaving it ill-prepared for conflicts
in cyberspace [1]. With American universities stretched thin
by this demand, current proposals have involved outsourcing
cybersecurity work and recruiting students at younger ages
to be cybersecurity professionals [2]. Because this demand is
expected to continue increasing, we need rigorous methods to
identify effective ways to educate students in cybersecurity.
Creating a valid and broadly used conceptual assessment
tool for cybersecurity is a vital resource for supporting
rigorous research on the efficacy of various teaching methods
for cybersecurity education. Unfortunately, no such validated
research instrument exists to assess student conceptual
knowledge of cybersecurity.

Sherman et al. began the Cybersecurity Assessment Tools
(CATS) Project to meet this need for validated research
instruments for cybersecurity education [3]–[9]. The CATS

Project is developing two Concept Inventories (CIs) to
evaluate how well teaching practices help students learn core
cybersecurity concepts: the Cybersecurity Concept Inventory
(CCI) and Cybersecurity Curriculum Assessment (CCA). The
CCI assesses how well a student has learned the basic concepts
of cybersecurity after one cybersecurity course. The CCA
assesses how well a student has learned cybersecurity concepts
after completing a full cybersecurity curriculum. In this paper,
we report on our evaluation of the first draft of the CCI using
a panel review by 12 cybersecurity experts and psychometric
evaluation of 142 student responses to the CCI. In the pilot
study, students taking a first cybersecurity course completed
the CCI online or in class proctored by the course instructor.

A. Validity and Concept Inventories

CIs have been applied to show that students regrettably
succeed in traditional assessments through fact memorization
rather than conceptual knowledge [10]–[12]. With a deeper
conceptual knowledge, students learn more efficiently in the
future and transfer their knowledge across contexts [12].
CIs have been effectively used to promote the adoption of
evidence-based teaching practices across STEM [10], [11],
[13].

A CI can be powerful and useful only if it is deemed
as a valid assessment tool by the education community that
will use the tool. A valid CI effectively evaluates targeted
concepts and can be used to draw a reasonable inference
of student knowledge [14]. The validity of the instrument
is established by a set of evidence and arguments about
whether the assessment tool can be appropriately used to draw
these inferences. To establish the validity of our assessment
tool, we are following the design and evaluation framework
recommended by the National Research Council [15], [16].
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B. Outline of Paper
We review the development process of the CCI and how

that process compares to the development of other CIs. We
then describe the framework we use to evaluate whether the
CCI can be used validly to assess student knowledge of
cybersecurity concepts. We then describe the research methods
for the expert panel review and pilot test with students. We
analyze the results of this pilot test using Classical Test Theory
(CTT). We then discuss these findings to identify the strengths
of the CCI and to recommend future improvements for the
CCI.

II. BACKGROUND

The National Research Council recommends establishing a
cognitive framework for the design of an assessment tool [16].
This cognitive framework defines what knowledge of a topic
should be assessed and the ways in which students reveal their
knowledge, or lack of knowledge, about that topic. Prior work
on the CATS Project has focused on establishing this cognitive
framework, providing baseline arguments for the validity of
the CCI.

Because a test cannot be universally valid for every
population or use, we need to define carefully the contexts,
populations, and uses for which the CCI is valid. We intend
the CCI to measure the cybersecurity conceptual knowledge
of students who have completed a first course in cybersecurity.
Cybersecurity is taught to an increasingly wide range of
stakeholders, including policy makers, computer scientists,
medical professionals, and business professionals, whose
courses vary in focus and depth. Because of this high variance,
we have chosen to optimize the CCI for the largest population
of cybersecurity professionals—computer scientists. While
the CCI may provide useful insights about the conceptual
knowledge of policy makers or others, our goal is to have the
tool provide the most insight about computer science students.

A. Previous Development of the CCI
In accordance with the recommendations of the National

Research Council, we based the design of the CCI on
the consensus opinions of a panel of experts [3] and on
documented student misconceptions [6].

Parekh et al. [3] began the CATS Project development
by identifying the core concepts of cybersecurity using a
Delphi process. A Delphi process is a rigorous and structured
method for creating consensus among experts about potentially
contentious issues, such as what subset of concepts should be
included on the CCI [17]. A Delphi process has been used to
identify the cognitive framework of several previous CIs [18].
as shown in Table I, this process identified five concepts all
related to adversarial thinking to include in the CCI [3]. From
these concepts, Sherman et al. [5] developed cybersecurity
scenarios that require students to understand these concepts.
For example, one scenario explores the concept “Identify
attacks against Confidentiality Integrity Authentication (CIA)
triad and authentication (C).” It involves a hypothetical
government facility where we define defenses and biometric
authentication methods, allow questions on potential attacks.

Using these scenarios, Scheponik et al. [4] performed
think-aloud interviews to discover student misconceptions

TABLE I. Five core concepts of cybersecurity

Identify vulnerabilities and failures (V)
Identify attacks against CIA triad and authentication (C)

Devise a defense (D)
Identify the security goals (G)

Identify potential targets and attackers (T)

and problematic reasoning about cybersecurity [6]. Example
forms of problematic reasoning include student beliefs that
encryption protects against most any cybersecurity threat and
the belief that cybersecurity threats come only from outside
an organization.

Using findings from these interviews, we created the
CCI multiple-choice questions, called items, using the same
scenarios and others developed later. Each CCI item comprises
a scenario, a stem (i.e., a question about the scenario), and five
answer choices. We created the wrong answers (distractors)
based on the interview findings. We created five stems for each
of the five concepts. By grounding the design of the CCI in
the Delphi process and student interviews, we have established
baseline arguments for the validity of the CCI.

In this paper, we continue the National Research Council’s
recommended development process. We use a panel of 12
experts to review whether the draft CCI indeed matches the
targeted cognitive framework. Once an assessment tool is
created, it should be administered to its targeted demographic
and be statistically evaluated [16]. We administered a pilot test
of the CCI to a group of 142 students from six universities
to evaluate whether students responded to questions on the
CCI according to our expectations from the interviews. We
use statistical analysis of student responses to determine what
inferences can be validly drawn from administrations of the
CCI.

B. Classical Test Theory (CTT)

Jorian et al. [19] outline three basic criteria of a valid
CI: CI indicates overall understanding of the concepts; CI
indicates understanding of a specific concept; and CI indicates
misconceptions or student errors. Jorion et al. recommend
using a series of statistical tests to demonstrate whether a CI
meets these criteria. CTT is often the first evaluation paradigm
used to evaluate an instrument because it is useful with smaller
sample sizes [20]. CTT is more practical than more exhaustive
analytics, such as Item Response Theory (IRT), because CTT
allows us to find problematic questions and distractors and
suggest modifications with a smaller number of students. This
analysis enables more rapid iteration and improvement of the
CI.

CTT argues that an assessment tool should minimize error.
An assessment should also possess items that all test a single
construct (the core concepts), that are neither too hard nor too
easy, and that each provide an accurate estimate of a student’s
overall ability.

C. Reliability

Reliability is a measure of the likelihood that repeated
measurements of the same student will yield the same score.
If an assessment tool is not reliable, it cannot be valid.
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In CTT, the core assumption is that a student’s observed
score (X) consists of two hypothetical values: a student’s true
score (T) and some random error (E) [20]. The student’s true
score would be the score of an infinite number of independent
administrations of the test [21]. This model is expressed
symbolically as X = T + E [18]. A reliable assessment tool
minimizes the error, so the observed score best reflects the
student’s understanding.

The conventional measurement used for internal reliability
is Cronbach’s α. Cronbach’s α is “an estimate of the
correlation between two random samples of items from a
universe of items like those in the test” [22]. We can determine
Cronbach’s α without taking the CCI multiple times if two
conditions are met. The conditions are: (1) the assessment
tool measures a single trait, (2) each item is either correct
or incorrect [18]. A reliable instrument will lead to α values
that are close to 1.

There is no universally acceptable Cronbach value, but 0.8
is considered good and 0.7 is the minimum value considered
satisfactory, according to Panayiotis [23] and Jorion et al. [19].

The standard error is a function of α and defines a
confidence interval for each student’s true score. We calculate
standard error using SE = Sx

√
1− α, where Sx is the

standard deviation of the sample and α is Cronbach’s α. When
the standard error is small, we can be confident students with
different observed scores have different true scores.

D. Difficulty and Discrimination

Reliability alone does not indicate the instrument provides a
valid representation of student knowledge. The validity of the
instrument can be further established by each item’s difficulty
and discrimination. The difficulty of an item is the fraction
of students with the correct response [20]. Each item of the
instrument should have a balanced range of difficulties falling
within 0.2 to 0.8 [18], [19]. When the difficulty is outside this
range, it does not effectively separate students of a different
understanding.

The discrimination of an item is the point-biserial
correlation between the item and the overall performance [19].
An item with low discrimination has weaker students (low
total scores) perform similarly to stronger students (high total
scores) on that item. A good item will have a discrimination
of at least 0.2 [18].

E. Topic Agreement and Distractor Analysis

Distractor analysis is used to identify items in which
their inclusion does not improve α or has a difficulty
and discrimination outside the accepted range. To analyze
distractors we partitioned the students into tertiles (thirds)
according to total scores. We computed the proportion of test
takers selecting each response [20]. There are certain trends
we expect to see: (1) The percentage of students selecting the
correct answer should increase from the bottom third to the
top third, (2) The item’s difficulty for the top third of students
should be near the upper range of accepted difficulty, (3) Each
distractor should have a negative discrimination value [24]. We
calculate a distractor’s discrimination value by setting it as the
correct answer and re-grading the student’s responses.

F. Concept Subtests
Cronbach’s α can be applied to a group of items called

a subtest. In our case, we propose that there may be five
subtests in the CCI, aligning with the five concepts identified
in the Delphi process, each consisting of five items designed
to cover those concepts. We evaluate these subtests separately
to assess reliability to determine whether we can interpret
understanding of the concepts from these subtests alone.
Ideally, each subtest should have a reliability similar to that
of the overall assessment tool. In practice, having a similar
reliability to the entire assessment tool is difficult because each
subtest has fewer items.

III. METHODS

We validated the CCI in two parts. First, experts reviewed
and refined the CCI. Second, students took the current CCI as
a pilot test.

A. Expert Panel
The initial CCI comprised 32 items developed using the

processes described in Section IIA. We gave these items to
an expert panel for review. The expert panel consisted of
11 instructors with backgrounds in cybersecurity and one
cybersecurity professional. Each expert received the initial CCI
in the form of an online exam containing each of the items
to complete. We asked experts to provide comments and rank
each item on the scale: Accept, Accept with Minor Revisions,
Accept with Major Revisions, and Reject. After answering,
experts were shown the correct answer and given the option
to provide additional comments on the correct answer.

We selected 25 items with a range of difficulties based on
our best estimation: six easy, 16 medium, and three hard.
The actual performance of students would likely differ from
our estimations. Each item focuses on one of the five major
concepts shown in Table I.

B. Pilot Test
The goal of the pilot test was to administer the current

CCI to a small group of 100–200 students and then use the
results of this pilot test to refine the instrument. We concluded
the pilot test in December 2018 by 142 students from six
universities.

Instructors at each university had the option of administering
a paper version or online version of the CCI. Both versions
included instructions at the beginning of the exam and
identical scenarios, questions, and distractors.

The instructor proctored the paper version of the CCI by
allocating 50 minutes for students to take the 25-item CCI in
class. Students completed the CCI. The instructor collected
the exam papers and sent them to us where we recorded all
student responses.

If the instructor decided to administer the online version, we
provided a link to the exam. The online exam differed from
the paper version in three ways. First, the online version had
a random ordering of distractors. Second, items that shared
a scenario were randomly ordered within that scenario. For
example, if Q1 and Q2 are the two items in the one scenario,
Q1 can appear before or after Q2 but always together. The
reason for randomizing the online version was to dissuade
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collusion between students and to minimize any possible effect
of item ordering on student performance. Because students
who had access were all in the same course, they may have
attempted to work together even if they received no benefit
from receiving a better score. Third, students were told to
spend 50 minutes but this limit was not strictly enforced. Each
student completed the exam and then selected a submit button
to save and submit their exam.

C. Pilot Demographics
The universities included in the pilot trial have diverse

locations and populations. Universities A and D are large
Midwestern public universities and have over 40 thousand
students enrolled. University E is a large public university
from the Southwest with over 40 thousand students enrolled.
Universities B, C, F are smaller universities from the
Midwestern and Eastern part of the country. These Universities
have 10 thousand or less students enrolled.

Table II lists the demographics of the study including
institution and number of responses. All universities
administered the online exam except for University A.

TABLE II. Breakdown of students by university.

University Institution Type Number of Subjects
University A Large, Midwest, Public 91
University B Small, East, Public 14
University C Small, Midwest, Public 1
University D Large, Midwest, Public 6
University E Large, Southwest, Public 17
University F Small, East, Public 12
Not Specified 3

Total 142

IV. RESULTS

We present results from the expert review of the CCI and
our psychometric analysis of student responses to the CCI.
To help the reader interpret our findings, we compare our
results with three CIs evaluated with the same techniques.
These CIs are the Concept Assessment Tool for Statics (27
questions and 1,372 students), the Statistics Concept Inventory
(38 questions and 402 students), and the Dynamics Concept
Inventory (29 questions and 5,966 students) [19]. We chose
these CIs because they are the few technical CIs that have
been analyzed using similar techniques.

A. Expert Panel
Figure 1 summarizes the results of the expert review

process. Although experts reviewed 8 more items, the figure
presents the results for the 24 items in the current CCI. Q25
was not finished in time for expert review but was included in
the pilot test as it effectively represents topic C. We selected
items for the CCI from those that experts reviewed positively
receiving a vast majority of Accept and Accept with Minor
Revisions.

Additionally, experts wrote comments for each item, which
we used to revise the items. For example, we show how we
used expert reviews to revise item Q4. Q4 covered a potential
SQL injection vulnerability and the means of defending
against it. The initial wording of the Q4 scenario is below.

Scenario A3. When a user Mike O’Brien registered
a new account for an online shopping site, he
was required to provide his username, address, first
and last name, and a password. Immediately after
Mike submitted his request, you—as the security
engineer—receive a database input error message in
the logs.

Experts commented that this wording is imprecise because
an error in the logs is not something you “receive” but rather
written into the log on the server. The word “receive” implies
the error was noticeable and could lead students to infer that
the error came from the client side. We modified this item
by replacing “receive a database input error” with “observe a
database input error.” The change makes it clear that the user
input did not cause an alert, instead logging on the server
side. This clarification will lead students away from client
side solutions such as “more thoroughly test the software
before deploying it” and toward server side solutions such as
the correct response, “sanitize input at the server side.” The
expert review process strengthened clarity, which is critical
to measuring a student’s conceptual knowledge. Whenever
expert review led to a disagreement with another expert, we
removed that item from the CCI, or if the item had support
from other experts, directly discussed the problem with the
experts who had conflicting feedback. We found a resolution
for all disagreements; but this outcome may not always be
possible when using an expert panel.

Fig. 1. Expert response to items. Almost all experts approved
of all the items.

B. Reliability and Standard Error
The Cronbach’s α of the CCI in our pilot test is 0.78.

As seen in Table III, this value is close to Jorian et al.’s
recommendation for good reliability and above Panayiotis’s
minimum recommendation. The reliability of the CCI is strong
when compared to published values of other CIs. The CCI is
sufficiently reliable to be a valid CI.

The standard measurement error of the CCI is 2.13 for our
pilot test. A 2.13 standard error implies a 68% confidence
interval for a student’s true score, given a mean observed score
of 8.61 points is from 6.48 to 10.74.

We recalculated Crobach‘s α with each item excluded. Each
item should increase the quality of the instrument indicated by
that item’s exclusion decreasing the overall reliability. There
are no low-quality items that decrease the overall reliability,
indicating that each item is reliable enough for inclusion in a
valid CI.
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TABLE III. Comparison of the quality of the CCI with that of other concept inventories. Recommended ranges for values
dervied from [19].

Measurement CCI Statics Statistics Dynamics Recommended Value
Cronbach’s α 0.78 0.84 0.64 0.74 ≥ 0.80

Minimum Difficulty Value 0.10 0.16 0.03 0.06 ≥ 0.20
Maximum Difficulty Value 0.66 0.78 0.87 0.91 ≤ 0.80

Minimum Discrimination Value 0.16 0.18 -0.13 0.01 ≥ 0.20
Maximum Discrimination Value 0.47 0.65 -0.57 0.56 None

TABLE IV. Descriptive statistics of the CCI.

Cronbach’s α 0.78
Standard Error of Measurement 2.13

Mean (out of 25) 8.61
Standard Deviation 4.58

Fig. 2. Histogram of student scores on the CCI. Most students
scored between 5 and 10 with mean of 8.61 and standard
deviation of 4.58.

C. Difficulty and Discrimination

If an item is too hard or too easy, it cannot effectively
differentiate students. Figure 3 shows the acceptable range
of difficulty, and Table V shows the difficulty of each item.
The range of difficulty for the CCI is 0.10 to 0.66. Figure 2
also shows that majority of the students score within five to
ten correct answers. When compared to the other instruments
shown in Table III, the CCI is too difficult and will have less
discriminatory power.

A high discrimination indicates that a student performance
on a given item is highly correlated to overall performance.
Figure 3 and Table V show the discrimination for each item.
The range of discrimination is 0.16 to 0.47. The discrimination
range is not as high as those of other CIs in Table III, but the
bottom of the range is encouraging. Those CIs had one, ten,
and five items fall below the 0.2 minimum values, compared
to the CCI with three items that fall below. Most of the items
being above the minimum value is an encouraging indicator
for the validity of the instrument.

D. Concept Subtests

We group the individual items within a concept to evaluate
the reliability of that concept subtest. Table VI shows the

TABLE V. Difficulty and discrimination of each CCI item.
Difficulty should be between 0.2 and 0.8. Discrimination
should be greater than 0.2 [19]. Bolded values indicate
potentially problematic values.

Item Discrimination Difficulty Item Discrimination Difficulty
Q1 0.21 0.24 Q14 0.32 0.25
Q2 0.31 0.33 Q15 0.25 0.10
Q3 0.13 0.26 Q16 0.35 0.59
Q4 0.46 0.52 Q17 0.35 0.52
Q5 0.35 0.18 Q18 0.19 0.31
Q6 0.23 0.22 Q19 0.27 0.28
Q7 0.30 0.66 Q20 0.22 0.14
Q8 0.21 0.19 Q21 0.23 0.44
Q9 0.33 0.61 Q22 0.47 0.34

Q10 0.19 0.40 Q23 0.38 0.49
Q11 0.34 0.36 Q24 0.30 0.40
Q12 0.36 0.24 Q25 0.24 0.14
Q13 0.21 0.28

α’s of the concept subtests. When evaluating the concepts,
it is notable that all of the values are significantly less than
0.7, considered minimal [23]. These findings suggest that
the concept subtests of the CCI cannot be validly used as
standalone instruments.

TABLE VI. Cronbach’s α by concept subtest. Values for all
subtests fall below desired thresholds [19].

Subconcept Cronbach’s α Items Included
V 0.22 Q1, Q3, Q11, Q17, Q21
C 0.45 Q2, Q5, Q14, Q18, Q24
D 0.47 Q4, Q6, Q13, Q19, Q23
G 0.36 Q8, Q9, Q10, Q22, Q25
T 0.50 Q7, Q12, Q15, Q16, Q20
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Fig. 3. Difficulty vs. discrimination. CCI items skew towards being too difficult with most of the items toward the bottom of
the accepted range.

E. Deeper Analysis of Specific Items

Our psychometric analysis suggests that the instrument
has too many difficult items. We analyze the distractor
distribution and distractor discrimination to understand why
some items are so difficult. We present an example of
analyzing and improving one of these items, Q15. Q15 had a
low difficulty score of 0.10 (i.e., too difficult) and a relatively
low discrimination of 0.25 in the pilot trial. We compare Q15
to a stronger item Q4 which had a moderate difficulty of 0.52
and an acceptable discrimination of 0.46 in the pilot trial.

Table VII shows the distractor analysis for Q15 and Q4.
In Q4, which has a desirable distribution, the percentage of
students selecting the correct answer increases from the bottom
tertile to the top and the top tertile scores near the top of the
acceptable range (0.8). Although in Q15 the percentage of
students selecting the correct answer increases from bottom
tertile to top, there is little separation between the top and
middle tertile. The top tertile students answer Q15 correctly
18% of the time and select distractor A 59% of the time. The
preference for distractor A among the top tertile is causing the
item to be too difficult.

TABLE VII. Example distractor discriminations (An asterisk
identifies correct alternative) with regard to tertile scores.
Upper students should pick each distractor less than lower
students

Q4
Response Lower Middle Upper

A 0.02 0 0.03
*B 0.28 0.62 0.85
C 0.11 0 0.26
D 0.37 0.14 0
E 0.22 0.24 0.10

blank 0.02 0 0

Q15
Response Lower Middle Upper

A 0.22 0.36 0.59
B 0.39 0.26 0.08
C 0.15 0.17 0.15
D 0.22 0.05 0
*E 0 0.17 0.18

blank 0.02 0 0

Table VIII shows the discrimination of each distractor for
items Q4 and Q15. We expect the distractors to have negative
discrimination values. Q4 has negative or zero values for each
distractor, as well as a large positive discrimination for the
correct answer. Q15 has a large positive discrimination for the

correct answer and is above the minimum acceptable value, but
distractor A has a larger discrimination value. If distractor A
were the correct answer, Q15 would have better discrimination
and the item’s difficulty would be in the acceptable range.

TABLE VIII. Example distractor discrimination. The correct
answer should have positive discrimination. Distractors should
have negative discrimination. An asterisk identifies correct
alternative.

Q4

Alternative Discrimination
A 0
*B 0.46
C -0.14
D -0.26
E -0.04

Q15

Alternative Discrimination
A 0.35
B -0.19
C 0
D -0.26
*E 0.24

V. DISCUSSION

Our validation study reveals the instrument could be used
to evaluate cybersecurity but would benefit from minor
modifications. The CCI has many desirable properties: high
reliability and strong expert consensus on the suitability of all
items. Unfortunately, our findings reveal a few weaknesses of
the CCI as currently constructed: low cohesion for individual
concepts, items that are too difficult, and too many difficult
items on the instrument.

A. Reliability and Validity
From the results of the pilot trial, the CCI had very

high reliability, especially when compared to other CIs. The
Cronbach’s α is 0.78, which is considered good for a CI.
In addition to the instrument’s reliability, no items decrease
the overall α, indicating that each item measures the same
construct of cybersecurity conceptual knowledge [18]. The
reliability of the instrument is necessary but not sufficient for
the instrument to be valid.

Experts positively reviewed each item and provided
feedback to improve the items. In addition to our goal

6



of covering each of the five core concepts, we considered
this feedback to select the 25 items that had the strongest
consensus of quality from the experts. The expert reviews
provide evidence for the content validity of the CCI: multiple
cybersecurity instructors believe that the CCI items represent
conceptual knowledge that students should have after a first
course in cybersecurity. The content validity provides further
evidence for the overall instrument validity.

B. Concept Cohesion
The strengths of the CCI indicate that the collection

of items and individual items are well designed from an
instructor perspective and reliable from a student performance
perspective. The student response data, however, reveal
that there is still room for improvement. Notably, while
we designed the CCI to assess five concepts, the student
performance data did not align well with these five concepts.
For example, there is no consistent correlation of the items
within each concept. Additionally, the items that evaluate
the concepts have low reliability; each α for the individual
concept is below 0.5 [19]. Because of the low reliability of the
concepts, we cannot recommend using the concept subtests to
assess student knowledge of each concept individually.

There are two possible interpretations for this lack of
cohesion and reliability within the concept subtests. First,
it is possible that the items were poorly designed and do
not reflect the core concepts. Second, it is possible that the
concepts themselves are poorly bounded, interconnected, or
too complex. Given that the expert reviewers did not express
any concerns about the content of the items, we argue that the
second interpretation is more likely.

Our finding of low cohesion among concept subtests is a
common finding among previously published CIs [19]. The
commonality of this finding suggests that it is generally
difficult for designers of an instrument to design effective
concept subtests. While most items may primarily engage
students in one concept, the concepts are likely interconnected.
Students need to use multiple concepts to answer each item
correctly. We believe that this fact may be especially true
in cybersecurity, which requires individuals to consider the
motivations or capabilities of attackers, constraints or goals
of defenders, and the technologies or techniques needed to
mitigate risk.

Additionally, the concepts discovered in the Delphi process
may be too complex and are really combinations of
similar, but separate, concepts [3]. For example, concept
“Identify attacks against CIA triad and authentication (C)”
involves four unique forms of attack. A confidentiality attack
could cover attacking a secure message protocol, and an
availability attack could cover a denial-of-service attack. Each
example is a form of attack and each is very relevant to
cybersecurity. A student may understand mechanisms that
enable secure communications yet still have very little idea
about denial-of-service attacks. Because each item of the CCI
may be multifaceted, creating subtests will be difficult, if not
intractable.

If we want to create reliable and valid concept subtests,
we may need to consider other models for creating them.
For example, we could try narrowing the scope of concept

C to just one attribute (e.g., confidentiality). This option
may not be desirable because it ignores the complexity
of an attacker’s varied motivations. Alternatively, we could
create multiple instruments that more fully explore each of
the five core concepts, but this option would dramatically
increase the work and cost of creating assessment tools for
cybersecurity. As currently constructed, the CCI provides
a reliable instrument for measuring a student’s overall
understanding of cybersecurity, which is a much-needed
first step. Future work can explore which types of future
development are needed for creating these subtests.

C. Difficulty
Unlike the alignment of the concepts, an appropriate range

of difficulty is often achieved in published CIs and necessary
for the instrument to be valid. The CCI is skewed to be too
difficult: five items are more difficult than the recommended
difficulty, and for 21 out of 25 items, fewer than 50%
of students answered each item correctly. This degree of
difficulty suggests that some items need to be made easier
to improve our ability to distinguish between students with
varying abilities and knowledge. Future work on the CCI must
explore how to make some items easier to improve the quality
of the CCI.

D. Limitations
There are a number of limitations in the pilot trial. The

most notable limitation is the depth of analysis performed
on the pilot trial results. IRT is not practical with the
number of students in the trial. Additionally, we did not
perform measurements such as Confirmatory Factor Analysis
(CFA) and Exploratory Factor Analysis (EFA), because the
Cronbach’s α for each concept subtest was so low. These
limitations are acceptable because this study is a pilot test.

We did not obtain permission to collect institution
demographics such the percentage of women or
underrepresented minorities enrolled in relevant degree
programs. We cannot provide meaningful analysis of how
different subpopulations performed on the assessment.

One institution administered the CCI on paper. Due to a lack
of statistical power, we are not able to determine the extent
different media may have had on student performance.

There were also limitations in the number of students from
each university. Ideally, the representation from the different
universities would be even so that the results would not be
skewed toward University A. The localization may have biased
the findings to one university.

E. Future Work: Refining Items
We will take Q15 as a specific example of the type of

modification we will make to the difficult items. Less than 10%
of students answered Q15 correctly, below what is acceptable
for a CI.

The item challenges subjects to find vulnerabilities in a
defense and falls under concept ”Identify vulnerabilities and
failures (V).” The scenario describes a hypothetical nuclear
treaty between two countries that requires a method of securely
transmitting a message from a monitoring device. Neither
country trusts the other, and the design must be fair to each
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country. There are certain properties the solution must hold.
Each party wants assurance that the message is not modified.
Country A wants to ensure that the message originates from
the device. Country B wants to monitor the message data
in real time. The premise is: “The sender applies a keyed
cryptographic hash function to each message using a key
distributed only to the sender, Country A, and Country B.”
Students are expected to find potential vulnerabilities in the
suggested outputs of the device.

Option A is the message with a hash of the message and the
current time. Options B, C, and D are the key and a hash of the
message, the message and hash of the message, and the hash
of the message, respectively. Option E, the correct answer, is
that the design cannot satisfy the system requirements.

Our distractor analysis revealed that the best students chose
distractor A in much the same way that they choose the
correct answer for other problems. This finding reveals that
as student knowledge increased, this wrong answer choice
became more compelling. When constructed well, each item
should lead students to pick the correct answer more often as
their knowledge increases.

The preference for Option A is understandable given that it
is more reasonable than are the other three distractors. Options
B and D do not even send the original message, so the message
cannot be verified. Option A and Option C do not guarantee
that the source sent the message, and since each party has
the key, they can modify the message and attach a new hash.
Because A has the same structure as C with the addition of
time being sent, it appears to be strictly superior to C, making
it the best options among the distractors A-D. Students must
see the problems with each distractor and select Option E,
which serves as a “none of the above.” Including a “none of the
above” usually makes assessments harder [25], especially with
Options A and C satisfying some of the desired properties.

The problem with the item, and “none of the above” in
general, is: Option E makes no assertion. This fact leads
students to pick the most reasonable of the other choices.
We have modified this item, changing Option E to make an
assertion: “The design does not work because Countries A
and B can modify the message.” This edit allows students a
definitive assertion to test and come to the same conclusion
that the other options do not satisfy the requirements. We
anticipate that this change, while minor, will make the item
easier and differentiate more students.

After making similar modifications to other items, our next
work is to administer the instrument to more students and
reanalyze the results. With easier items, the difficulty will
cover a better range and better separate students. The range
of difficulties and modification of items that are too difficult
should increase the discriminatory power of the CCI and
improve the CCI’s validity and usefulness. Seperately, we are
beginning to validate the CCA.

VI. CONCLUSION

The expert review and pilot testing of the CCI revealed
the CCI reliably tests student knowledge of cybersecurity.
Currently, we could use the CCI as an evaluation instrument
but the scores would be low, reducing the discriminatory power
of the CCI. By making the CCI easier, it will be more broadly

applicable and provide useful measurements of a broad range
of cybersecurity students. Further research will explore the
modifications of the items and testing of more students.
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